# Search Results for “Draggable”

##### Area Under Sine (draggable)

Observe the definite integral of sine, or the area between the function sin(x) and the x axis, and how it changes between different bounds by dragging the boundaries, a and b. What happens to the area when the interval is 2Π? Why?##### Circle Proof

This is the first app ever on Euclid’s Muse! It provides a draggable diagram to help illustrate a mathematical proof. This proof was discovered when modeling the Twisted Savonius style wind turbine from a top view. The full proof can be found here.##### Chord Angle Theorem

The chord angle theorem states that in an inscribed triangle (ABC) where A is the center of the circle and BC is a chord, and BDC is an inscribed triangle on the same chord, angle BDC must equal one half of angle BAC. Try changing the angle and moving point D and observe the theorem’s truth. Note: the measure of angle BDC is being constantly recalculated as point D is dragged, but it doesn't change because of this theorem.##### Cyclic Quadrilateral Theorem

The Cyclic Quadrilateral Theorem states that for a quadrilateral inscribed in a circle, the measures of opposite angles must add to 180 degrees. Drag the points and observe the angle measures to see how this theorem holds true.##### Simple Similar Triangles

Drag points A, B, and C to change the size and shape of the blue triangle, and its white counterpart that is similar (constrained by proportional SAS). Drag the Red point D to change the ratio in sizes. Observe the multitude of calculated output lengths and angles, and how they match the proportion value, proving similarity, regardless of the triangles' shapes/sizes.##### Vector Combinations and Span

**AB**and

**AC**are vectors. Vector

**AF**is defined by

*t*(

**AB**) +

*s*(

**AC**) where

*t*and

*s*are scalars. Drag

**E**and

**D**to change the scalars and see how using the scalars creates vectors in the plane defined by

**AB**and

**AC**.